Exercice 1:

$\begin{aligned} & N P^{2}=M N^{2}+M P^{2} \\ & N P=\frac{5,76^{2}+5,2^{2}}{}=\mathbf{7 , 7 6} \end{aligned}$	$\begin{aligned} & M P^{2}=M N^{2}+N P^{2} \\ & M N^{2}=M P^{2}-N P^{2} \\ & M N=\frac{59,04^{2}-12,96^{2}}{}=\mathbf{5 7 , 6} \end{aligned}$	$\begin{aligned} & M N^{2}=N P^{2}+M P^{2} \\ & M P^{2}=M N^{2}-N P^{2} \\ & M P=\frac{549^{2}-99^{2}}{M}=\mathbf{5 4 0} \end{aligned}$

Exercice 2:

$B S^{2}=B U^{2}+U S^{2}$	$C R^{2}=C A^{2}+R A^{2}$	$B T^{2}=B U^{2}+U T^{2}$
$B S=\overline{8^{2}+15^{2}}=\mathbf{1 7} \mathbf{c m}$	$C R=\overline{8,1^{2}+15,1^{2}}=17,1 \mathrm{~cm}$	$U T^{2}=B T^{2}-B U^{2}$
	$C R=\mathbf{1 7 1 \mathbf { m m }}$	$U T=\overline{10,5^{2}-6,3^{2}}=\mathbf{8 , 4} \mathbf{~ c m}$

Exrecice 3:

$\begin{aligned} & R S^{2}=R I^{2}+I S^{2} \\ & I S^{2}=R S^{2}-R I^{2} \\ & I S=\frac{13^{2}-12^{2}}{}=\mathbf{5} \mathbf{c m} \end{aligned}$	$\begin{aligned} & T C^{2}=T O^{2}+O C^{2} \\ & T C=\frac{64^{2}+48^{2}}{}=\mathbf{8 0} \mathbf{~ m m} \end{aligned}$	$\begin{aligned} & M R^{2}=M E^{2}+E R^{2} \\ & M E^{2}=M R^{2}-E R^{2} \\ & M E=\overline{87^{2}-60^{2}}=\mathbf{6 3} \\ & \mathrm{M} \end{aligned}$
$\begin{aligned} & C Q^{2}=C O^{2}+O Q^{2} \\ & C Q=\overline{7^{2}+5^{2}}=\mathbf{8 , 6} \mathbf{c m} \\ & C Q=\mathbf{8 6} \mathbf{~ m m} \end{aligned}$	$\begin{aligned} & N L^{2}=N I^{2}+I L^{2} \\ & I L^{2}=N L^{2}-N I^{2} \\ & I L=\overline{8^{2}-6,5^{2}}=\mathbf{4 , 7} \end{aligned}$	

Exercice 4:

Exercice 5:

diagonale $=\overline{4^{2}+4^{2}}=5,66 \mathrm{~cm}$

Exercice 8:

diagonale ${ }^{2}=c^{2}+c^{2}=2 c^{2}$
$c^{2}=\frac{\text { diagonale }^{2}}{2}$

$c=\frac{\text { diagonale }^{2}}{2}=\frac{7^{2}}{2}=4,95 \mathrm{~cm}$

Exercice 9:

$\boldsymbol{B} \boldsymbol{C}^{2}=B A^{2}+A C^{2} \quad$ ou $\quad \boldsymbol{B} \boldsymbol{C}^{2}=B D^{2}+D C^{2} \quad$ ou $\quad \boldsymbol{B C} \boldsymbol{C}^{2}=E C^{2}-E B^{2}$
$A C^{2}=\boldsymbol{B} \boldsymbol{C}^{2}-B A^{2} \quad$ ou $\quad A C^{2}=\boldsymbol{B} \boldsymbol{D}^{2}+\boldsymbol{D} \boldsymbol{C}^{\mathbf{2}}-B A^{2} \quad$ ou $\quad A C^{2}=\boldsymbol{E} \boldsymbol{C}^{\mathbf{2}}-\boldsymbol{E} \boldsymbol{B}^{2}-B A^{2}$
$B D^{2}=\boldsymbol{B} \boldsymbol{C}^{2}-D C^{2} \quad$ ou $\quad B D^{2}=\boldsymbol{B} \boldsymbol{A}^{2}+\boldsymbol{A} \boldsymbol{C}^{2}-D C^{2} \quad$ ou $\quad B D^{2}=\boldsymbol{E} \boldsymbol{C}^{2}-\boldsymbol{E} \boldsymbol{B}^{2}-D C^{2}$
$D C^{2}=\boldsymbol{B} \boldsymbol{C}^{2}-B D^{2} \quad$ ou $\quad D C^{2}=\boldsymbol{B} \boldsymbol{A}^{2}+\boldsymbol{A} \boldsymbol{C}^{2}-B D^{2} \quad$ ou $\quad D C^{2}=\boldsymbol{E} \boldsymbol{C}^{2}-\boldsymbol{E} \boldsymbol{B}^{2}-B D^{2}$

Exercice 10:

$R T^{2}=F R^{2}+T F^{2}$
$T F^{2}=R T^{2}-F R^{2}$
$T F=\overline{7,4^{2}-2,4^{2}}=\mathbf{7} \mathbf{c m}$

Exercice 11:

$\begin{aligned} & A C^{2}=A B^{2}+B C^{2} \\ & B C^{2}=A C^{2}-A B^{2} \end{aligned}$	$\begin{aligned} & B C^{2}=A B^{2}+A C^{2} \\ & B C=\frac{5^{2}+13^{2}}{}=\mathbf{1 3}, \mathbf{9} \mathbf{c m} \end{aligned}$
$\mathrm{B} \longrightarrow \mathrm{C}$	

