Quelles sont les coordonnées du point
$$P\left(\frac{-32\pi}{3}\right)$$
?

Question 2

Déterminez à quel angle trigonométrique, exprimé en radians, correspondent les coordonnées $\left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$ dans l'intervalle $\mathbf{0}, \mathbf{2}\pi$

Question 3

À partir du graphique suivant, trouvez la règle de la fonction sinusoïdale représentée :

Détermine les caractéristiques des graphiques suivants si ceux-ci correspondent à la fonction de type $f(x) = \sin x$.

Amplitude : _____

Déphasage : _____

Période :

Amplitude : _____

Déphasage : _____

Période :

Amplitude : _____

Déphasage : _____

Période :

Choisir le graphique de la fonction sinusoïdale, qui a subi une translation horizontale de 3 unités et une translation verticale de 2 unités sachant que son amplitude est de 2.

A.

В.

C.

D.

Déterminez la règle de la fonction sinusoïdale représentée par le graphique ci-dessous. Donnez votre réponse en considérant que le facteur *a* relié à l'amplitude est positif.

CORRIGÉ

Question1

$$N = [t \div 2\pi]$$

$$= \left[\frac{-32\pi}{3} \div 2\pi\right]$$

$$= \left[\frac{-16}{3}\right]$$

$$= \left[-5,\overline{3}\right]$$

$$= -6$$

$$t' = t - N \times 2\pi$$

$$= \frac{-32\pi}{3} - -6 \times 2\pi$$

$$= \frac{4}{3}\pi$$

$$P\left(\frac{4\pi}{3}\right) = \left(\frac{-1}{2}, \frac{-\sqrt{3}}{2}\right)$$

Question 2

Entre 0 et 2π , l'angle au centre correspondant au point de coordonnées

$$\left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$$
 est $\frac{7\pi}{4}$.

La période de cette fonction est π . (alors b = 2)

L'amplitude est 3.

Le déphasage est $\frac{\pi}{2}$ en fonction d'un sinus.

La forme canonique du sinus étant : $f(x) = a \sin b(x-h) + k$, l'équation est donc :

$$f(x) = 3 \sin 2(x - \frac{\pi}{2}) + 2 \text{ ou } f(x) = 3 \sin (2x - \pi) + 2$$

Question 4

- a) Amplitude: 2
 - Déphasage: 0
 - Période : $\frac{3\pi}{4}$
- b) Amplitude: $\frac{1}{2}$
 - Déphasage: -π
 - Période : 12π
- c) Amplitude: 4
 - Déphasage : $\frac{3\pi}{4}$
 - Période : 3π

Question 5

Translation verticale : k = -1

Amplitude : $A = |a| \rightarrow a = 3$ ou a = -3

 $\mbox{P\'eriode}: \mbox{ P} = \pi \quad \rightarrow \quad \frac{2\pi}{\left| b \right|} = \pi \quad \rightarrow \quad \mbox{ b=2}$

Déphasage pour le <u>sinus</u> : $D = \frac{\pi}{4}$ ou $D = \frac{-3\pi}{4}$

$$f x = 3 \sin 2 x - \frac{\pi}{4} - 1$$
 ou $f x = 3 \sin 2 x + \frac{3\pi}{4} - 1$